COMMUTATOR EQUATIONS IN FREE GROUPS

BY

E. RIPS

ABSTRACT

Let f_1, \dots, f_n be free generators of a free group F. We consider the equation $[z_1,\dots, z_n]_{\omega} = [f_1,\dots, f_n]_{\omega}$, where ω and ω' indicate the disposition of brackets in the higher commutators $[z_1, \dots, z_n]_n$ and $[f_1, \dots, f_n]_n$. We give a necessary and sufficient condition on ω and ω' for the existence of solutions of this equation. It is also shown that for any solution $z_1 = r_1, \dots, z_n = r_n$ we have $\langle r_1,\cdots,r_n\rangle = \langle f_1,\cdots,f_n\rangle.$

Introduction

From a well-known result of Nielsen [3] it follows that if for some elements r, s of a free group F on two generators a, b

$$
[r,s]=[a,b]
$$

then r , s freely generate F .

In the present paper similar properties of higher commutators are investigated. We recall the definition of a higher commutator.

Let θ be a free (non-associative) monoid on one generator *i* with respect to a bracket operation. θ is graded in a natural way, $\theta = \bigcup_{m=1}^{\infty} \theta_m$, where $\theta_i = \{i\}$, $\theta_m \cap \theta_n = \emptyset$ for $m \neq n$ and for $\omega_1 \in \theta_m$, $\omega_2 \in \theta_n$, $[\omega_1, \omega_2] \in \theta_{m+n}$.

The higher commutator $[g_1, \dots, g_n]_{\omega}$ of the type $\omega \in \theta_n$ of some elements $g_1, \dots, g_n \in G$ is defined by induction on *n* as follows:

(i) if $n = 1$ then $\omega = i$ and $[g_1]_i = g_1$;

(ii) if $n > 1$ then $\omega = [\omega_1, \omega_2], \omega_1 \in \theta_m, \omega_2 \in \theta_{n-m}$ and

$$
[g_1,\cdots,g_n]_{\omega}=[[g_1,\cdots,g_m]_{\omega_1},[g_{m+1},\cdots,g_n]_{\omega_2}].
$$

Consider also a free commutative monoid θ' on one generator i' and the homomorphism $\tau : \theta \rightarrow \theta'$ determined by $\tau : i \rightarrow i'$.

Received January 2, 1981

Let $F_{\infty} = \langle f_1, f_2, \cdots \rangle$ be a free group of countable rank on free generators f_1, f_2, \dots , and $F_n = \langle f_1, \dots, f_n \rangle \leq F_\infty$.

THEOREM 1. The *equation*

(*) $[z_1, \dots, z_n]_{\omega} = [f_1, \dots, f_n]_{\omega}$ $(\omega, \omega' \in \theta_*)$

in the free group F \sim *has a solution if and only if* $\omega \tau = \omega' \tau$ *. If* $r_1, \dots, r_n \in F_{\pi}$ *is a solution of equation (*), then* $\langle r_1, \dots, r_n \rangle = F_n$.

The following lemma is the key statement in the proof of the theorem.

MAIN LEMMA. Let a free group F be decomposed into a free product $F =$ $H_1 * H_2$, and let $h_1 \in H_1$, $h_2 \in H_2$ be non-unit elements such that the cyclic groups $\langle h_1 \rangle$ and $\langle h_2 \rangle$ are isolated. If for some $g_1, g_2 \in F$, $[g_1, g_2] \neq 1$ and $[g_1, g_2] \in \langle h_1, h_2 \rangle$ *then one of the following three cases holds:*

(i) there exists an element $s \in \langle h_1, h_2 \rangle$ such that $s^{-1}g_1s \in H_1$, $s^{-1}g_2s \in H_1$ and $s^{-1}[g_1, g_2]s = h_1^{+1}$;

(ii) there exists an element $t \in \langle h_1, h_2 \rangle$ such that

$$
t^{-1}g_1t \in H_2
$$
, $t^{-1}g_2t \in H_2$ and $t^{-1}[g_1, g_2]t = h_{2}^{+1}$;

(iii) $g_1, g_2 \in \langle h_1, h_2 \rangle$.

REMARK. The assumption that $\langle h_1 \rangle$ and $\langle h_2 \rangle$ are isolated cannot be omitted as the following example shows:

$$
F = \langle f_1 \rangle * \langle f_2 \rangle, \quad h_1 = f_1, \quad h_2 = f_2^2, \quad [f_2 f_1, f_2^2] \in \langle f_1, f_2^2 \rangle \quad \text{but } f_2 f_1 \notin \langle f_1, f_2^2 \rangle.
$$

Note that if r_1 , r_2 are elements of a free group F then $\langle [r_1, r_2] \rangle$ is isolated [1].

In §1 we prove Theorem 1 using the Main Lemma and obtain a description of endomorphisms of F_{∞} that fix $[f_1, \dots, f_n]_{\omega}$ for $n > 2$. The §§2, 3, 4 are devoted to the proof of the Main Lemma.

§1. Proof of Theorem 1

The proof is based on separation of variables in the equation $(*)$ for $n > 2$. At first we need the following statement.

PROPOSITION. *Under the assumptions of the Main Lemma assume that* $[g_1, g_2] = [h_1, h_2]$. If $g_1 = [g_3, g_4]$ *then for some integers k, l one of the following cases holds:*

(1) $g_1 = [h_1, h_2]^{-k} h_1[h_1, h_2]^{k}$, $g_2 = [h_1, h_2]^{-k}h_1^h h_2[h_1, h_2]^k;$

(2)
$$
g_1 = [h_1, h_2]^{-k}h_1^{-1}h_2h_1[h_1, h_2]^k
$$
,
\n $g_2 = [h_1, h_2]^{-k}(h_1^{-1}h_2h_1)^h h_1^{-1}[h_1, h_2]^k$;
\n(3) $g_1 = [h_1, h_2]^{-k}h_2^{-1}h_1^{-1}h_2[h_1, h_2]^k$,
\n $g_2 = [h_1, h_2]^{-k}(h_2^{-1}h_1^{-1}h_2)^h h_2^{-1}h_1^{-1}h_2^{-1}h_1h_2[h_1, h_2]^k$;
\n(4) $g_1 = [h_1, h_2]^{-k}h_2^{-1}[h_1, h_2]^k$,
\n $g_2 = [h_1, h_2]^{-k}h_2^{-1}h_1h_2[h_1, h_2]^k$.
\nIf $g_2 = [g_5, g_6]$, then for some integers k, l one of the following cases holds:
\n(1') $g_1 = [h_1, h_2]^{-k}h_2^h h_1[h_1, h_2]^k$;
\n $g_2 = [h_1, h_2]^{-k}h_2^h h_1h_2h_2^h$;
\n(2') $g_1 = [h_1, h_2]^{-k}h_1^{-1}h_2h_1[h_1, h_2]^k$;
\n(3') $g_1 = [h_1, h_2]^{-k}h_1^{-1}h_1h_2^{-1}h_1h_2^h h_2^{-1}h_1^{-1}h_2[h_1, h_2]^k$,
\n $g_2 = [h_1, h_2]^{-k}h_2^{-1}h_1^{-1}h_2^{-1}h_1h_2^h h_2^{-1}h_1^{-1}h_2[h_1, h_2]^k$;
\n(3') $g_1 = [h_1, h_2]^{-k}h_2^{-1}h_1^{-1}h_2^{-1}h_1h_2h_1, h_2]^k$;
\n(4') $g_1 = [h_1, h_2]^{-k}h_2^{-1}h_1h_2^h h_1, h_2]^k$;
\n

PROOF. It is enough to verify the first part of the proposition. $[h_1, h_2]$ is not conjugate to h_1^2 nor to h_2^2 in $\langle h_1, h_2 \rangle$. Therefore according to the Main Lemma it follows from $[g_1, g_2] = [h_1, h_2]$ that $g_1, g_2 \in \langle h_1, h_2 \rangle$, and, by the theorem of Nielsen, g_1 and g_2 freely generate $\langle h_1, h_2 \rangle$. In particular, $g_1, g_2 \notin (\langle h_1, h_2 \rangle)'$. Applying once more the Main Lemma we obtain from $g_1 = [g_3, g_4] \in \langle h_1, h_2 \rangle$ that g_1 is conjugated in $\langle h_1, h_2 \rangle$ to one of the elements $h_1, h_2, h_1^{-1}, h_2^{-1}$.

We have $[g_1, g_2] = [h_1, h_2] = [h_1^{-1}h_1^{-1}h_2, h_1^{-1}h_1^{-1}h_2h_1 h_2] = [h_1^{-1}h_2h_1, h_1^{-1}] =$ $[h_2^{-1}, h_2^{-1}h_1h_2]$, and each pair of elements (h_1, h_2) , $(h_2^{-1}h_1^{-1}h_2, h_2^{-1}h_1^{-1}h_2^{-1}h_1h_2)$, $(h_1^{-1}h_2h_1, h_1^{-1})$, $(h_2^{-1}, h_2^{-1}h_1h_2)$ generates $\langle h_1, h_2 \rangle$. Therefore we may complete the proof of the proposition by proving the following assertion:

If S is a free group on free generators $s_1, s_2, t_1, t_2 \in S$, $t_1 = t^{-1}s_1t$ and $[t_1, t_2] = [s_1, s_2]$, then for some integers k and l

$$
t_1 = [s_1, s_2]^{-k} s_1 [s_1, s_2]^k, \qquad t_2 = [s_1, s_2]^{-k} s_1' s_2 [s_1, s_2]^k.
$$

Indeed, we have $t_1 \equiv s_1 \pmod{S'}$ and $t_2 \equiv s_1^t s_2^m \pmod{S'}$. Let φ be an endomorphism of S defined by $s_1\varphi = t_1$, $s_2\varphi = t_1^{-1}t_2$. In S/S' , φ induces a linear mapping with a matrix $\begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix}$. As $[t_1, t_1^{-1}t_2] = [t_1, t_2] = [s_1, s_2]$, according to theorem 3 [2], $(t_1, t_1^{-1}t_2)$ is a positive pair of generators of S. Hence det($\begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix} = 1$, $m = 1$. Thus φ is an automorphism of S (identical modulo S'). Then by [1, p. 466] φ is an inner automorphism of S. It means that for some $s \in S$, $t_1 = s^{-1}s_1s_2$ and $t_1^{-1}t_2 = s^{-1}s_2s$. We have $[s_1, s_2] = [t_1, t_1^{-1}t_2] = s^{-1}[s_1, s_2]s$; therefore $s = [s_1, s_2]^k$ for some integer k , and hence

$$
t_1 = [s_1, s_2]^{-k} s_1 [s_1, s_2]^k
$$
 and $t_2 = [s_1, s_2]^{-k} s_1' s_2 [s_1, s_2]^k$,

as required.

Now we return to the proof of Theorem 1. In the case $n = 1$, the assertion is trivial, and for $n = 2$ it follows from [3]. Let $n > 2$.

We have $\omega = [\omega_1, \omega_2]$ and $\omega' = [\omega'_1, \omega'_2]$, where $\omega_1 \in \theta_m$, $\omega_2 \in \theta_{n-m}$, $\omega'_1 \in \theta_m$. $\omega'_2 \in \theta_{n-m'}$, and, correspondingly,

$$
[z_1, \dots, z_n]_{\omega} = [[z_1, \dots, z_m]_{\omega_1}, [z_{m+1}, \dots, z_n]_{\omega_2}],
$$

$$
[f_1, \dots, f_n]_{\omega'} = [[f_1, \dots, f_m]_{\omega_1}, [f_{m'+1}, \dots, f_n]_{\omega_2}].
$$

If we set $h_1 = [f_1, \dots, f_m]_{\omega}$, $h_2 = [f_{m+1}, \dots, f_n]_{\omega}$,

$$
H_1 = F_{m'} = \langle f_1, \cdots, f_{m'} \rangle, \qquad H_2 = \langle f_{m'+1}, \cdots, f_n, \cdots \rangle,
$$

then $h_1 \in H_1$, $h_2 \in H_2$, and $F_x = H_1 * H_2$. The conditions of the Main Lemma are satisfied. Let $w_1 = [z_1, \dots, z_m]_{\omega_1}$ and $w_2 = [z_{m+1}, \dots, z_n]_{\omega_2}$. The equation (*) can be rewritten as

$$
(**) \qquad [w_1, w_2] = [h_1, h_2].
$$

I. If $m = 1$ then $n - m \ge 2$, whence $\omega_2 = [\omega_5, \omega_6]$ and $w_2 = [w_5, w_6]$ for some w_5 and w_6 . According to the Proposition the equation (**) is equivalent to a disjunction of the following four systems of equations, in which k and l are arbitrary integers:

(1)
$$
\begin{cases} w_1 = z_1 = [h_1, h_2]^{-k} h_2^t h_1 [h_1, h_2]^k, \\ w_2 = [z_2, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} [f_{m+1}, \dots, f_n]_{\omega_2} [h_1, h_2]^k; \end{cases}
$$

(2)
$$
\begin{cases} w_1 = z_1 = [h_1, h_2]^{-k} h_1^{-l-1} h_2 h_1[h_1, h_2]^k, \\ w_2 = [z_2, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} [f_1, \dots, f_m]_{\omega_2}^{-1} [h_1, h_2]^k; \end{cases}
$$

(3)
$$
\begin{cases} w_1 = z_1 = [h_1, h_2]^{-k} h_2^{-l} h_1^{-l} h_2^{-l+1} [h_1, h_2]^k, \\ w_2 = [z_2, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} h_2^{-l} h_1^{-l} [f_{m'+1}, \dots, f_n]_{\omega_2}^{-l} h_1 h_2 [h_1, h_2]^k; \end{cases}
$$

(4)
$$
\begin{cases} w_1 = z_1 = [h_1, h_2]^{-k} h_2^{-1} h_1^t [h_1, h_2]^k, \\ w_1 = [z_2, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} h_2^{-1} [f_1, \dots, f_m]_{\omega_1} h_2 [h_1, h_2]^k. \end{cases}
$$

II. If $1 \le m \le n-1$, then $\omega_1 = [\omega_3, \omega_4], \omega_2 = [\omega_5, \omega_6],$ and $w_1 = [w_3, w_4], w_2 =$ $[w_5, w_6]$ for some w_3, w_4, w_5 , and w_6 . Using the Proposition, we obtain that in this case the equation (**) is equivalent to a disjunction of the following four systems of equations, in which k is an arbitrary integer:

(5)
$$
\begin{cases} w_1 = [z_1, \dots, z_m]_{\omega_1} = [h_1, h_2]^{-k} [f_1, \dots, f_m]_{\omega_1} [h_1, h_2]^k, \\ w_2 = [z_{m+1}, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} [f_{m'+1}, \dots, f_n]_{\omega_2} [h_1, h_2]^k; \end{cases}
$$

(6)
$$
\begin{cases} w_1 = [z_1, \dots, z_m]_{\omega_1} = [h_1, h_2]^{-k} h_1^{-1} [f_{m'+1}, \dots, f_n]_{\omega_2} h_1 [h_1, h_2]^k, \\ w_2 = [z_{m+1}, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} [f_1, \dots, f_{m'}]_{\omega_1}^{-1} [h_1, h_2]^k; \end{cases}
$$

(7)
$$
\begin{cases} w_1 = [z_1, \dots, z_m]_{\omega_1} = [h_1, h_2]^{-k} h_2^{-1} [f_1, \dots, f_m]_{\omega_1}^{-1} h_2 |h_1, h_2]^k, \\ w_2 = [z_{m+1}, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} h_2^{-1} h_1^{-1} [f_{m'+1}, \dots, f_n]_{\omega_2}^{-1} h_1 h_2 [h_1, h_2]^k; \end{cases}
$$

(8)
$$
\begin{cases} w_1 = [z_1, \dots, z_m]_{\omega_1} = [h_1, h_2]^{-k} [f_{m'+1}, \dots, f_n]_{\omega_2}^{-1} [h_1, h_2]^k, \\ w_2 = [z_{m+1}, \dots, z_n]_{\omega_2} = [h_1, h_2]^{-k} h_2^{-1} [f_1, \dots, f_{m'}]_{\omega_1} h_2 [h_1, h_2]^k. \end{cases}
$$

III. If $m = n - 1$, then $\omega_1 = [\omega_3, \omega_4]$ and again, according to the Proposition, the equation (**) is equivalent to a disjunction of the following four systems of equations in which k and l are arbitrary integers:

(9)
$$
\begin{cases} w_1 = [z_1, \dots, z_{n-1}]_{\omega_1} = [h_1, h_2]^{-k} [f_1, \dots, f_m]_{\omega_1} [h_1, h_2]^k, \\ w_2 = z_n = [h_1, h_2]^{-k} h_1^t h_2 [h_1, h_2]^k; \end{cases}
$$

(10)
$$
\begin{cases} w_1 = [z_1, \dots, z_{n-1}]_{\omega_1} = [h_1, h_2]^{-k} h_1^{-1} [f_{m'+1}, \dots, f_n]_{\omega_2} h_1 [h_1, h_2]^k, \\ w_2 = z_n = [h_1, h_2]^{-k} h_1^{-1} h_2^{-1} [h_1, h_2]^k; \end{cases}
$$

(11)
$$
\begin{cases} w_1 = [z_1, \dots, z_{n-1}]_{\omega_1} = [h_1, h_2]^{-k} h_2^{-1} [f_1, \dots, f_m]_{\omega_1}^{-1} h_2 [h_1, h_2]^k, \\ w_2 = z_n = [h_1, h_2]^{-k} h_2^{-1} h_1^{-1} h_2^{-1} h_1 h_2 [h_1, h_2]^k; \end{cases}
$$

(12)
$$
\begin{cases} w_1 = [z_1, \dots, z_{n-1}]_{\omega_1} = [h_1, h_2]^{-k} [f_{m'+1}, \dots, f_n]_{\omega_2}^{-1} [h_1, h_2]^k, \\ w_2 = z_n = [h_1, h_2]^{-k} h_2^{-1-1} h_1 h_2 [h_1, h_2]^k. \end{cases}
$$

Comparing the weights of commutators in the left and right parts of systems of equations (1) - (12) , we see that the systems (1) , (3) , (5) , (7) , (9) , (11) do not have solutions for $m \neq m'$, but the systems (2), (4), (6), (8), (10), (12) do not have solutions for $m \neq n - m'$. Therefore it is enough for the systems (2), (4), (6), (8), (10), (12) to consider the case $m = n - m'$.

Then for every system (i), $1 \le i \le 12$, and for every value of k and l, it is possible to construct an automorphism $\varphi = \varphi_i (k, l)$ of the group F_∞ such that the subgroup F_n is φ -invariant and the system (i) can be rewritten as

$$
[z_1, \cdots, z_m]_{\omega_1} = [f_1\varphi, \cdots, f_m\varphi]_{\omega_1},
$$

\n
$$
[z_{m+1}, \cdots, z_n]_{\omega_2} = [f_{m+1}\varphi, \cdots, f_n\varphi]_{\omega_2},
$$

where $\omega^*_{1}\tau = \omega'_{1}\tau$ and $\omega^*_{2}\tau = \omega'_{2}\tau$ for $i = 1, 3, 5, 7, 9, 11$, and $\omega^*_{1}\tau = \omega'_{2}\tau$, $\omega^*_{2}\tau =$ $\omega'_1 \tau$ for $i = 2, 4, 6, 8, 10, 12$.

For example, for $i = 7$, we have $m = m'$, $\omega' = [\omega'_3, \omega'_4], \omega'_2 = [\omega'_3, \omega'_6]$, where $\omega'_3 \in \theta_{m_1}, \ \omega'_4 \in \theta_{m-m_1}, \ \omega'_5 \in \theta_{m_2}, \ \omega'_6 \in \theta_{n-m-m_2},$ and we set $\omega_1^* = [\omega'_4, \omega'_3], \ \omega_2^* =$ $[\omega'_6, \omega'_5]$ and $\varphi = \mu\nu$, where

(13)

$$
\begin{cases}\nf_j \mu = f_{j+m_i} & \text{if } 1 \leq j \leq m - m_1, \\
f_j \mu = f_{j-m+m_i} & \text{if } m - m_1 + 1 \leq j \leq m, \\
f_j \mu = f_{j+m_2} & \text{if } m + 1 \leq j \leq n - m_2, \\
f_j \mu = f_{j-n+m+m_2} & \text{if } n - m_2 + 1 \leq j \leq n, \\
f_j \mu = f_j & \text{if } j > n;\n\end{cases}
$$

(14)
$$
\begin{cases} f_i \nu = [h_1, h_2]^{-k} h_2^{-1} f_i h_2 [h_1, h_2]^k & \text{if } 1 \leq j \leq m, \\ f_j \nu = [h_1, h_2]^{-k} h_2^{-1} h_1^{-1} f_j h_1 h_2 [h_1, h_2]^k & \text{if } j > m. \end{cases}
$$

As $F_{\infty} = H_1 * H_2 = H_1 * h_1^{-1} H_2 h_1 = [h_1, h_2]^{-1} h_2^{-1} (H_1 * h_1^{-1} H_2 h_1) h_2 [h_1, h_2]^{k}$, then ν is in fact an automorphism. It is obvious that F_1 is μ -invariant and v-invariant. Using (13) and (14) one can rewrite (7) in the form (***). Other cases are similar. We now proceed by induction on n. Assume that for all $n < n_0$ the theorem is already proved. We prove it for $n = n_0$, where $n_0 > 2$.

If the equation (*) has a solution $z_1 = r_1, \dots, z_n = r_n$, then for some automorphism φ this solution is also a solution of the system of equations (***). Since $m < n = n_0$ and $n - m < n = n_0$, by the induction hypothesis

$$
\omega_1\tau=\omega_1^*\tau,\quad \omega_2\tau=\omega_2^*\tau,\quad \langle r_1,\cdots,r_m\rangle=\langle f_1\varphi,\cdots,f_m\varphi\rangle,
$$

and

$$
\langle r_{m+1},\cdots,r_n\rangle=\langle f_{m+1}\varphi,\cdots,f_n\varphi\rangle,
$$

whence

$$
\omega\tau=[\omega_1\tau,\omega_2\tau]=[\omega_1^*\tau,\omega_2^*\tau]=[\omega_1'\tau,\omega_2'\tau]=\omega'\tau
$$

and

$$
\langle r_1,\cdots,r_n\rangle=\langle f_1\varphi,\cdots,f_n\varphi\rangle=F_n\varphi=F_n.
$$

Now let $\omega \tau = \omega' \tau$. Then $\omega_1 \tau = \omega'_1 \tau$ and $\omega_2 \tau = \omega'_2 \tau$, or $\omega_1 \tau = \omega'_2 \tau$ and $\omega_2 \tau =$ ω' .

If $\omega_1 \tau = \omega'_1 \tau$ and $\omega_2 \tau = \omega'_2 \tau$ then the system (***) has a solution provided ω^{\dagger} $\tau = \omega'$ and ω^{\dagger} $\tau = \omega'$. In this case for $m = 1$ (respectively, for $1 \le m \le n-1$, or for $m = n-1$) the systems (1) and (3) (respectively, (5) and (7), or (9) and (11)) have solutions, and, therefore, the equation (*) has a solution.

If $\omega_1 \tau = \omega_2' \tau$ and $\omega_2 \tau = \omega_1' \tau$ then the system (***) has a solution provided $\omega^*_{1}\tau=\omega'_{2}\tau$ and $\omega^*_{2}\tau=\omega'_{1}\tau$. In this case for $m=1$ (respectively, for $1 \le m \le n - 1$, or for $m = n - 1$) the systems (2) and (4) (respectively, (6) and (8), or (10) and (12)) have solutions, and, therefore, the equation (*) has a solution.

This completes the proof of the theorem.

Notice that if $z_1 = r_1, \dots, z_n = r_n$ is a solution of the equation (*) and ψ is an endomorphism of F_{∞} such that $f_i\psi = r_i$, $1 \leq i \leq n$, then $[f_1, \dots, f_n]_{\infty} \psi =$ $[f_1,\dots,f_n]_{\omega}$. Therefore setting $\omega = \omega'$ we obtain from the proof of Theorem 1 the following assertion.

THEOREM 2. Let $n>2$, $\omega\in\theta_n$, $\omega=[\omega_1,\omega_2], \omega_1\in\theta_m$, $\omega_2\in\theta_{n-m}$, $h_1=$ ${[f_1, \dots, f_m]_{\omega_1}, h_2 = [f_{m+1}, \dots, f_n]_{\omega_2}, h = [h_1, h_2] = [f_1, \dots, f_n]_{\omega}, and let \psi be an$ *automorphism of F_∞ such that h* $\psi = \psi$ *. Then:*

(1) *For* $1 < m < n - 1$ *and* $\omega_1 \tau = \omega_2 \tau$ *there are four possibilities:*

(i) $h_1 \psi = h^{-k} h_1 h^k$, $h_2 \psi = h^{-k} h_2 h^k$;

(ii) $h_1 \psi = h^{-k} h_1 h^k$, $h_2 \psi = h^{-k} h_2^{-1} h_1 h_2 h_1 h_2 h_2 h^k$;

(iii) $h_1\psi = h^{-k}h_1^{-1}h_2h^k$, $h_2\psi = h^{-k}h_2^{-1}h_1^{-1}h_2h^k$;

(iv) $h_1\psi = h^{-k}h_2^{-1}h^k$, $h_2\psi = h^{-k}h_2^{-1}h_1h_2h^k$.

(2) *For* $1 < m < n - 1$ *and* $\omega_1 \tau \neq \omega_2 \tau$ *there are the possibilities (i) and (ii) from the preceding point.*

(3) *For m = 1 there are two possibilities:*

(i)
$$
h_1\psi = h^{-k}h_2h_1h^k
$$
, $h_2\psi = h^{-k}h_2h^k$;

(ii)
$$
h_1\psi = h^{-k}h_2^{-1}h_1^{-1}h_2^{-l+1}h^k
$$
, $h_2\psi = h^{-k}h_2^{-1}h_1^{-1}h_2^{-1}h_1h_2h^k$.

(4) *For m = n - 1 there are two possibilities:*

(i) $h_1 \psi = h^{-k} h_1 h^k$, $h_2 \psi = h^{-k} h_1^l h_2 h^k$;

(ii) $h_1 \psi = h^{-k} h_2^{-1} h_1^{-1} h_2 h^k$, $h_2 \psi = h^{-k} h_2^{-1} h_1^{-1} h_1 h_2 h^k$,

where k and l are arbitrary integers.

For $\omega \in \theta_n$ and for elements $g_1, \dots, g_n \in G$ let the set of elements $\Lambda_{\omega}(g_1, \dots, g_n)$ be defined as follows: $\Lambda_i(g_1) = \emptyset$, and if $n > 1$, $\omega = [\omega_1, \omega_2]$, $\omega_1 \in \theta_m, ~ \omega_2 \in \theta_{n-m}$

$$
\Lambda_{\omega}(g_1,\dots,g_n)=\Lambda_{\omega_1}(g_1,\dots,g_m)\cup\Lambda_{\omega_2}(g_{m+1},\dots,g_n)
$$

$$
\cup \{[g_1,\dots,g_n]_{\omega},[g_1,\dots,g_n]_{\omega}^{-1}\}.
$$

COROLLARY 1. Let ψ b_i an endomorphism of F_x such that $[f_1, \dots, f_n]_{\omega} \psi =$ $[f_1, \dots, f_n]_{\omega}^{\omega}$. Then for every $g \in \Lambda_{\omega}(f_1, \dots, f_n)$, $g\psi$ is conjugate to some $g' \in$ $\Lambda_{\omega}(f_1,\cdots,f_n).$

PROOF. We proceed by induction on *n*. For $n = 1$ the assertion is trivial and suppose it is proved for all integers $\lt n$. If $[f_1, \dots, f_n]_{\omega}$ $\psi = [f_1, \dots, f_n]_{\omega}$, then Theorem 2 gives the statement. Let $[f_1, \dots, f_n]_{\omega} \psi = [f_1, \dots, f_n]_{\omega}^{-1}$. By Theorem 1 there exists an endomorphism ξ of F_* such that

$$
[f_1,\cdots,f_m]_{\omega_1}\xi=[f_{m+1},\cdots,f_n]_{\omega_2}^{-1}[f_1,\cdots,f_m]_{\omega_1}[f_{m+1},\cdots,f_n]_{\omega_2},[f_{m+1},\cdots,f_n]_{\omega_2}\xi=[f_{m+1},\cdots,f_n]_{\omega_2}^{-1}.
$$

Then $[f_1, \dots, f_n]_{\omega} \xi = [f_1, \dots, f_n]_{\omega}^{-1}$ and $[f_1, \dots, f_n]_{\omega} \xi \psi = [f_1, \dots, f_n]_{\omega}$. By induction hypothesis ξ has the required property, therefore ψ also has it.

Let A_n be the group of automorphisms of the group $F_n = \langle f_1, \dots, f_n \rangle$ and let $G_{\omega} = C_{A_n}([f_1, \dots, f_n]_{\omega}),$

$$
H_1=C_{A_n}([f_1,\cdots,f_m]_{\omega_1},f_{m+1},\cdots,f_n),\quad H_2=C_{A_n}(f_1,\cdots,f_m,[f_{m+1},\cdots,f_n]_{\omega_2}).
$$

COROLLARY 2. *Under the assumption of Theorem 2 for* $1 \le m \le n - 1$ and $\omega_1 \tau = \omega_2 \tau$ there is an exact sequence

$$
1 \rightarrow H_1 \times H_2 \times Z \rightarrow G_{\omega} \rightarrow Z_4 \rightarrow 1;
$$

for $1 < m < n - 1$ *and* $\omega_1 \tau \neq \omega_2 \tau$ *there is an exact sequence*

 $1 \rightarrow H_1 \times H_2 \times Z \rightarrow G_n \rightarrow Z_2 \rightarrow 1$.

for m = 1 there is an exact sequence

 $1 \rightarrow Z \times H_2 \times Z \rightarrow G_{\omega} \rightarrow Z_2 \rightarrow 1$,

and for $m = n - 1$ there is an exact sequence $1 \rightarrow H_1 \times Z \times Z \rightarrow G_a \rightarrow Z_2 \rightarrow 1.$

This follows from Theorem 2 by an immediate calculation.

A description of $G_{i,j}$ is given in [2]. It follows from theorem 1 [2] that $G_{i,j}$ is generated by the automorphisms λ, μ of F_2 where $f_1 \lambda = f_2^{-1}$, $f_2 \lambda = f_2^{-1} f_1$, $f_1\mu = f_2f_1$, $f_2\mu = f_2$. Here $\lambda^2 = (\lambda\mu)^3$, and λ^4 is an inner automorphism:

$$
f_i\lambda^4=[f_1,f_2]^{-1}f_i[f_1,f_2],\qquad i=1,2.
$$

The following diagram

$$
1 \longrightarrow \langle X^4 \rangle \longrightarrow \langle X, Y \mid X^2 = (XY)^3 \rangle \longrightarrow SL_2(Z) \longrightarrow 1
$$

\n
$$
\cong \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel
$$

\n
$$
1 \longrightarrow \langle \lambda^4 \rangle \longrightarrow G_{\{i,i\}} \longrightarrow SL_2(Z) \longrightarrow 1
$$

is commutative, where $X\rho = \mu$, $Y\rho = \mu$, $Xu = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, $Yu = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and for $\varphi \in G_{[i,j]}$, φv is the matrix (with respect to the basis $f_1F'_2$, $f_2F'_2$) of the automorphism of F_2/F_2' , induced by φ . It is well-known that the upper row is exact, therefore the lower row is exact and ρ is an isomorphism.

We define functions $\alpha(\omega)$, $\beta(\omega)$, $\gamma(\omega)$, $\delta(\omega)$ as follows:

$$
\alpha(i) = 0, \quad \beta(i) = 1, \quad \gamma(i) = 0, \quad \delta(i) = 0, \quad \alpha([i, i]) = 1,
$$

 $\beta([i, i]) = \gamma([i, i]) = \delta([i, i]) = 0,$

and for $\omega \in \theta_n$, $n > 2$, $\omega = [\omega_1, \omega_2], \omega_1 \in \theta_m$, $\omega_2 \in \theta_{n-m}$

$$
\alpha(\omega) = \alpha(\omega_1) + \alpha(\omega_2), \qquad \beta(\omega) = \beta(\omega_1) + \beta(\omega_2),
$$

$$
\gamma(\omega) = \begin{cases} \gamma(\omega_1) + \gamma(\omega_2) + 1, & \text{if } \omega_1 \tau \neq \omega_2 \tau, \\ \gamma(\omega_1) + \gamma(\omega_2) & \text{if } \omega_1 \tau = \omega_2 \tau, \end{cases}
$$

$$
\delta(\omega) = \begin{cases} \delta(\omega_1) + \delta(\omega_2), & \text{if } \omega_1 \tau \neq \omega_2 \tau, \\ \delta(\omega_1) + \delta(\omega_2) + 1 & \text{if } \omega_1 \tau = \omega_2 \tau. \end{cases}
$$

Let H_w be a subgroup of G_{ω} consisting of all $\varphi \in G_{\omega}$ such that g φ is conjugate to g for all $g \in \Lambda_{\omega}(f_1,\dots, f_n)$.

COROLLARY 3. H_w is normal in G_{ω} *,* $H_{\omega} \cong G_{\{i,j\}}^{\alpha(\beta)} \times Z^{\beta(\omega)+n-2}$ *,* G_{ω}/H_{ω} *is finite* and of order $2^{\gamma(\omega)+2\delta(\omega)}$.

This corollary easily follows from the preceding results using induction on the weight of ω .

02. Irreducible form of a commutator

Let M be a set and x_{α} and y_{α} symbols with $\alpha \in M$. Denote by Y the semigroup of words in the alphabet $\{x_{\alpha}, y_{\alpha} \mid \alpha \in M\}$, and let F be a free group on generators f_{α} , $\alpha \in M$. Let $\xi : Y \rightarrow F$ be a homomorphism of semigroups such that $x_{\alpha} \xi = f_{\alpha}$, $y_{\alpha} \xi = f_{\alpha}^{-1}$. Let further $\sigma: Y \rightarrow Y$ be an antiisomorphism, defined by $x_{\alpha}\sigma = y_{\alpha}$, $y_{\alpha}\sigma = x_{\alpha}$, $\alpha \in M$. For every $w \in Y$, $\omega \sigma \xi = (\omega \xi)^{-1}$.

A word from Y is called irreducible if the symbols x_{α} and y_{α} do not appear in it one near the other for all $\alpha \in M$. It is well known that the restriction of ξ on the set X of irreducible words is bijective; therefore there exists an inverse mapping $\Theta: F \to X$.

A word $\omega \in Y$ is said to be cyclically reducible if for some $\alpha \in M$ it begins

with x_{α} and ends with y_{α} , or begins with y_{α} and ends with x_{α} . Otherwise it is said to be cyclically irreducible.

The length of a word $w \in Y$ will be denoted as $l(w)$. The word wo we shall write also \bar{w} . The graphical equality of words will be denoted by the symbol \equiv .

Let us consider in Y the subsets Δ_i , $1 \leq i \leq 8$, defined as follows:

for some word $w \in Y$ we set $w \in \Delta_1$, if $w \equiv \bar{c}\bar{d}cd$; $w \in \Delta_2$, if $w = \overline{b} \overline{c} \overline{d} b c d$; $w \in \Delta_3$, if $w = \overline{b} \overline{c} b \overline{e} c e$; $w \in \Delta_i$, if $w = \overline{b} \overline{c} \overline{d} b \overline{e} c d e$; $w \in \Delta_5$, if $w = \overline{a} \overline{c} \overline{d} c da$; $w \in \Delta_6$, if $w = \overline{a} \overline{b} \overline{c} \overline{d} b c d a$; $w \in \Delta_7$, if $w = \overline{a}b\overline{c}b\overline{e}cea$; $w \in \Delta_{\rm s}$, if $w = \overline{a} \overline{b} \overline{c} \overline{d} b \overline{e} c dea$,

where a, b, c, d, e denote non-empty words from Y whenever they appear. Let $\Delta = \bigcup_{i=1}^{8} \Delta_i$. Wicks [5] has proved the following statement.

LEMMA 1. A non-unit element $r \in F$ is a commutator of some $s_1, s_2 \in F$ if and *only if for some* $q \in F$ $(q^{-1}rq)$ $\Theta \equiv \tilde{a}\tilde{b}\tilde{c}$ abc where some of the words a, b, c may be *empty.*

Since all cyclic permutations of a word $\bar{a}b\bar{c}abc$ belong to $\Delta_1 \cup \Delta_2 \cup \Delta_3 \cup \Delta_4$, we obtain:

LEMMA 2. A non-unit element $r \in F$ is a commutator of some $s_1, s_2 \in F$ if and *only if* $r \Theta \in \Delta$.

w Some further lemmas

Let $M = M_1 \cup M_2$, $M_1 \cap M_2 = \emptyset$, $H_1 = \langle f_{\alpha}, \alpha \in M_1 \rangle$, $H_2 = \langle f_{\alpha}, \alpha \in M_2 \rangle$, $X_1 =$ $H_1\Theta$, $X_2 = H_2\Theta$.

Further, suppose that $M_1 \neq \emptyset$, $M_2 \neq \emptyset$, and that v_1 and v_2 are some nonempty cyclically reduced words, $v_1 \in X_1$, $v_2 \in X_2$. Let $V = (\langle v_1 \xi, v_2 \xi \rangle) \Theta$.

LEMMA 3. If $\bar{a}ba \in V$ and the word b is cyclically irreducible, then $a, b \in V$.

PROOF. We may assume that $a \neq 1$ and $b \neq 1$. For some words q_1, q_2, q_3, q_1 , c_1, c_2 we have

$$
\bar{a}ba\equiv c_1q_2q_1a_1\equiv \bar{a}_1\bar{q}_1\bar{q}_3c_2,
$$

where $a_1 \in V$, $q_1a_1 \equiv a$, $q_2q_1a_1 \in V$, $\bar{a}_1\bar{q}_1\bar{q}_2 \in V$, and each of the words q_1q_2, q_1q_3 . coincides with one of the words v_1 , \bar{v}_1 , v_2 , \bar{v}_2 . If $q_1 \neq 1$ then $q_2 \equiv q_3$, hence $q_2 \equiv 1$

because the word b is cyclically reduced. Thus, in such a way or another, $a \equiv q_1 a_1 \in V$. Then also $b \in V$. The lemma is proved.

LEMMA 4. If $a, b \in V$, $a \equiv a_1p$, $b \equiv \bar{p}b_1$ and $a_1, b_1 \in X$, then $a_1, p, b_1 \in V$.

PROOF. If one of the words a_1, b_1 is empty, then the assertion is obvious. Assume that $a_1 \neq 1$ and $b_1 \neq 1$. Let us consider the word $\bar{p}b_1ca_1p$, where

 $c \equiv 1$, if the word a_1b_1 is cyclically irreducible,

 $c \equiv v_2$, if a_1b_1 is cyclically reducible, $a \equiv v_1a_2$ or $a \equiv \bar{v}_1a_2$,

 $c \equiv v_1$, if a_1b_1 is cyclically reducible, $a \equiv v_2a_3$ or $a \equiv \bar{v}_2a_3$.

In each of these three cases $\bar{p}b_1ca_1p \in X$, and the word b_1ca_1 is cyclically irreducible. By Lemma 3, $p \in V$ and, therefore, $a_i \in V$ and $b_i \in V$. The lemma is proved.

A word w is called simple if it cannot be represented in the form $v \equiv u^k$ with $k > 1$ (see [4], definition 22). From now on we suppose that the words v_1 and v_2 are simple.

LEMMA 5. If $av_1b \in V$, or $av_2b \in V$, then $a, b \in V$.

PROOF. Let $av_1b \in V$. We have $av_1b = a_1a_2v_1b_2b_1$, where $a_1, a_2v_1b_2, b_1 \in V$ and $a_2v_1b_2 \in X_1$. Then for some $k \ge 1$, $a_2v_1b_2 \equiv v_1^k$, or $a_2v_1b_2 \equiv \tilde{v}_1^k$. But the equality $a_2v_1b_2 = \bar{v}_1^k$ is impossible, because v_1 cannot coincide with a cyclic permutation of \bar{v}_1 (see [4], definition 14 and lemma 45).

Since v_1 is simple, it cannot coincide with its non-trivial cyclic permutation ([4], lemma 20), therefore it follows from $a_2v_1b_2 \equiv v_1^k$ that $a_2 \equiv v_1^{i-1}$ and $b_2 \equiv v_1^{k-i}$ for some *i*, $1 \le i \le k$. Hence we obtain $a \in V$ and $b \in V$. The case $av_2b \in V$ is similar. The lemma is proved.

LEMMA 6. If $ab \in V$ and $ba \in V$, then $a \in V$ and $b \in V$.

PROOF. We may assume that $ab \neq 1$. Then $ab = u_1c_1 = c_2u_2$, where each of the words u_1, u_2 coincides with one of the words $v_1, \bar{v}_1, v_2, \bar{v}_2$. If $l(u_1) \leq l(a)$, then $a = u_1 a_1$, therefore $ba = bu_1 a_1 \in V$, whence by Lemma 5 $b \in V$ and, further, $a \in V$. Similarly, if $l(u_2) \leq l(b)$, then $a \in V$ and $b \in V$. But if $l(u_1) > l(a)$ and $l(u_2)$ > $l(b)$ then *ab* coincides with one of the words v_1 , \bar{v}_1 , v_2 , \bar{v}_2 . Suppose for the sake of definiteness that $ab = v_1$. In this case $a, b \in X_1$ and, because of $l(ab) = l(ba)$, we have $ba \equiv v_1$ or $ba \equiv \bar{v}_1$. The equality $ba \equiv \bar{v}_1$ is impossible since *ba* is a cyclic permutation of v_1 . If $ba = v_1 = ab$, then one of the words a, b must be empty, because v_1 is a simple word. Then $a \in V$ and $b \in V$. Other cases are similar. The lemma is proved.

LEMMA 7. If $w = \bar{c}\bar{d}cd \in V \backslash (X_1 \cup X_2)$, where $c \neq 1$, $d \neq 1$, then $c, d \in V$.

PROOF. We have $w = u_1 a_1 = a_2 u_2$, where each of the words u_1, u_2 coincides with one of the words $v_1, \bar{v}_1, v_2, \bar{v}_2$.

If $l(u_i) \leq l(c)$, then $\bar{c} = u_i p$, and then $w = u_i p \bar{d} \bar{p} \bar{u}_i d$. By Lemma 5, $d \in V$ and, further, $c \in V$. Similarly, if $l(u_2) \leq l(d)$, then $c \in V$ and $d \in V$. Now we shall show that $l(u_1) > l(c)$ and $l(u_2) > l(d)$ leads to a contradiction. We may assume $u_1 \equiv v_1$, as other cases are similar. Then $\bar{d} = q\bar{d}_1$, where $q \in X_1$, $q \neq 1$, and $w \equiv \bar{c}q\bar{d}_1cd_1\bar{q}$, whence $u_2 \equiv v_1$, or $u_2 \equiv \bar{v}_1$. We obtain $c \in X_1$ and $d \in X_1$, and therefore $w \in X_1$. This contradicts the conditions of the lemma. The lemma is proved.

LEMMA 8. If $w = \overline{b} \overline{c} \overline{d} b c d \in V \setminus (X_1 \cup X_2)$, where the words b, c, d are non*empty, then b, c,* $d \in V$ *.*

PROOF. As $cd \in X$ and $b\overline{c} \in X$, then the words $\overline{c}\overline{d}$ and *bc* are cyclically irreducible. It follows from $cd \in V$ that $\overline{b} \overline{c} \overline{d} b \in V$, whence by Lemma 3, $b \in V$ and $\bar{c}\bar{d} \in V$. Application of Lemma 6 gives c, $d \in V$. Similarly, if $\bar{b}\bar{c} \in V$ then $b, c, d \in V$. We have to prove that $cd \in V$, or $\overline{bc} \in V$.

We have $w \equiv u_1 a_1 \equiv a_2 u_2$, where each of the words u_1, u_2 coincides with one of the words $v_1, \bar{v}_1, v_2, \bar{v}_2$. If $l(u_1) \leq l(b)$, then $\bar{b} = u_1p$ and $w = u_1p\bar{c}d\bar{b}\bar{u}_1cd$, and by Lemma 5, $cd \in V$. Similarly, it follows from $l(u_2) \leq l(d)$ that $\overline{bc} \in V$.

Now we shall show that $l(u_1) > l(b)$ and $l(u_2) > l(d)$ leads to a contradiction. We may assume $u_1 = v_1$. Then $\bar{c} = q\bar{c}_1$, where $q \in X_1$, $q \neq 1$. Since $w = \bar{b}\bar{c}\bar{d}bc_1\bar{q}d$ and $l(u_2) > l(d)$, we have $u_2 \equiv v_1$ or $u_2 \equiv \bar{v}_1$. Since $w \notin X_1$, $b \in X_1$, and $d \in X_1$, *so c* = c_2uc_3 , where $u = v_2$, or $u = \bar{v}_2$. We have $w = \bar{b}\bar{c}_3\bar{u}\bar{c}_2\bar{d}bc_2uc_3d$, whence by Lemma 5, $\bar{bc}_1 \in V$ and $c_1d \in V$. As $\bar{db} \in X$, by Lemma 4, $b \in V$ in contradiction to $l(u_1) > l(b)$. The lemma is proved.

LEMMA 9. Let $w = \overline{b} \overline{c} \overline{d} b \overline{e} c d e \in V \setminus (X_1 \cup X_2)$, where the words b, c, e are *non-empty and, if* $d \equiv 1$ *, then c is cyclically irreducible. Then b, c, d, e* $\in V$ *.*

PROOF. Since $cd \in X$ and $\overline{cd} \in X$, the words cd and \overline{cd} are cyclically irreducible. It follows from $\bar{b}\bar{c}\bar{d}b \in V$ that $b \in V$, $\bar{c}\bar{d} \in V$ and $\bar{e}cde \in V$. Then $e \in V$ and $cd \in V$ which gives $c \in V$ and $d \in V$. We have to prove that $\bar{b}\bar{c}\bar{d}b \in V$.

We have $w = u_1 a_1 = a_2 u_2$, where each of the words u_1, u_2 coincides with one of the words $v_1, \bar{v}_1, v_2, \bar{v}_2$. We may assume that $u_1 \equiv v_1$. If $u_2 \equiv v_2$ or $u_2 \equiv \bar{v}_2$ then some non-empty word from X_1 is an initial segment of the word $\overline{b}\overline{c}db$, and some non-empty word from X_2 is a final segment of the word $\bar{e}cde$. Then some final segment of \overline{bc} db is a word from X_1 and some-initial segment of \overline{ec} de is a word from X_2 . This implies $\bar{b}\bar{c}\bar{d}b \in V$.

Since $b\bar{\epsilon} \in X$ the word w is cyclically irreducible and therefore $u_2 \neq \bar{v}_1$. We have to consider only the case $u_2 \equiv v_1$.

If $l(v_i) \leq l(b)$, then $\bar{b} = v_i p$ and $w = v_i p c \bar{d} \bar{p} \bar{v}_i e c d e$, so that by Lemma 5, $\bar{e}cde \in V$ and, further, $\bar{b}\bar{c}db \in V$. Similarly, if $l(v_i) \leq l(e)$, then $\bar{b}\bar{c}db \in V$.

Now we show that $l(v_1) > l(b)$ and $l(v_1) > l(e)$ leads to a contradiction. It follows from $l(v_i) > l(b)$ and $l(v_i) > l(e)$ that $b \in X_i$, $e \in X_i$ and $\bar{c} \equiv qc_i$, where $q \in X_i$, $q \neq 1$. As $w \notin X_i$, then $\bar{e}c d e \notin X_i$. This means that $c \equiv c_2 u c_3 \bar{q}$, or $d \equiv d_1 u d_2$, where $u \equiv v_2$, or $u \equiv \bar{v}_2$.

If $c = c_2 u c_3 \bar{q}$, then $w = \bar{b}q \bar{c}_3 \bar{u} \bar{c}_2 \bar{d} b \bar{e} c_2 u c_3 \bar{q} d e$. Hence by Lemma 5, $\bar{b}q \bar{c}_3 \in V$. The word w is cyclically irreducible, therefore

$$
w^2 = \overline{b}\overline{c}\overline{d}b\overline{e}c_2uc_3\overline{q}de\overline{b}q\overline{c}_3\overline{u}\overline{c}_2\overline{d}b\overline{e}cde \in V,
$$

whence $c_3\bar{q}de\bar{b}q\bar{c}_3 \in V$. It follows from $\bar{d}b \in X$ that the word $de\bar{b}$ is cyclically irreducible. By Lemma 3, $c_3\bar{q} \in V$. Then $b \in V$ which contradicts $l(v_1) > l(b)$. Similarly, it follows from $d \equiv d_1ud_2$ that $e \in U$ in contradiction to $l(v_1) > l(e)$. The lemma is proved.

LEMMA 10. *If* $\overline{b}\overline{c}b\overline{e}ce \in V\setminus (X_1 \cup X_2)$ *and* $\overline{b}e \in X$ *, where the words b, c, e are non-empty, then b, c, e* \in *V.*

PROOF. Let $c = \bar{c}_1 c_2 c_1$, where c_2 is cyclically irreducible. By Lemma 9 $c_1b, c_2, c_1e \in V$. Since $\bar{bc}_1 \in V$ and $c_1e \in V$, so from $\bar{be} \in X$ according to Lemma 4 follows $b \in V$, $c_1 \in V$ and $e \in V$. Therefore also $c \in V$. The lemma is proved.

04. The proof of the Main Lemma

Let the conditions of the Main Lemma be satisfied. Let f_a , $\alpha \in M_1$, be a system of free generators of H_1 and let f_{α} , $\alpha \in M_2$, be a system of free generators of H_2 . We may suppose that elements f_{α} are chosen in such a way that $h_1\Theta$ and $h_2\Theta$ are cyclically irreducible. Then the condition that $\langle h_1 \rangle$ and $\langle h_2 \rangle$ are isolated means that the words $h_1\Theta$ and $h_2\Theta$ are simple.

Let $V = \langle h_1, h_2 \rangle \Theta$. We have $[g_1, g_2] \Theta = \overline{w}_1 w_2 w_1 \in V$, where the word w_2 is cyclically irreducible. Then according to Lemma 3, $w_1 \in V$ and $w_2 \in V$. Let $r = \bar{w}_1 \xi$, $r_1 = r^{-1} g_1 r$ and $r_2 = r^{-1} g_2 r$. We have $[r_1, r_2] \Theta = w_2$.

Let the pair of elements $s_1, s_2 \in F$ have the properties

- (a) $\langle s_1, s_2 \rangle = \langle r_1, r_2 \rangle$,
- (b) $[r_1, r_2] = [s_1, s_2],$

and the sum of lengths $l(s_1) + l(s_2)$ be the minimal possible for pairs of elements of F satisfying (a) and (b).

The arguments from the proof of theorem 1 of [2] show that the elements s_1, s_2 have also the following properties:

(c) $[s_1, s_2] \Theta = u_1 u_2 u_3 u_4$, where $u_i \neq 1$, $i = 1, 2, 3, 4$, $\overline{s_1 \Theta} = u_1 q_1$, $\overline{s_2 \Theta} = \overline{a_1} u_2 q_2$, $s_1\Theta = \bar{q}_2u_3q_3$, $s_2\Theta = \bar{q}_3u_4$,

(d) $2l(q_i) \leq l(s_i)$, $i = 1,2,3$, $j = 1,2$.

We shall show that $s_1, s_2 \in H_1$, or $s_1, s_2 \in H_2$, or $s_1, s_2 \in \langle h_1, h_2 \rangle$. Then, according to (a), the same will hold for r_1, r_2 . Since $r \in \langle h_1, h_2 \rangle$, $\langle h_1, h_2 \rangle \cap H_1 = \langle h_1 \rangle$, $\langle h_1, h_2 \rangle \cap H_2 = \langle h_2 \rangle$ and the subgroup $\langle [r_1, r_2] \rangle$ is isolated, this is enough to complete the proof of the Main Lemma.

If the words q_1, q_2, q_3 are non-empty, then it follows from $s_1 \Theta = \bar{q}_1 \bar{u}_1 = \bar{q}_2 u_3 q_3$ and $s_2\Theta = \bar{q}_2\bar{u}_2q_1 = \bar{q}_3u_4$ that for some non-empty $q, q_1 = qp_1, q_2 = qp_2, q_3 = qp_3$. Then $[s_1, s_2] \Theta = \overline{q}u'_1u_2u_3u'_4q$, where $u_1 = \overline{q}u'_1$, $u_4 = u'_4q$. This contradicts the cyclical irreducibility of $[s_1, s_2] \Theta = [r_1, r_2] \Theta = w_2$. Therefore at least one of the words q_1, q_2, q_3 is empty.

Assume at first that $q_2 \equiv 1$. By the condition (d), for some words u, v we have $s_1\Theta \equiv \bar{q}_1uq_3$ and $s_2\Theta \equiv \bar{q}_3vq_1$. Then $[s_1, s_2]\Theta \equiv \bar{q}_3\bar{u}\bar{v}q_3\bar{q}_1uvq_1$. If $[s_1, s_2]\Theta \in X_1$, then u, v, $q_1, q_3 \in X_1$, whence $s_1 \otimes s_2 \otimes \in X_1$ and $s_1, s_2 \in H_1$. Similarly, if $[s_1, s_2] \oplus \in$ X_2 , then $s_1, s_2 \in H_2$.

Let $[s_1, s_2] \Theta \in V \setminus (X_1 \cup X_2)$. If $u \neq 1$ and $v \neq 1$, then according to Lemmas 7, 8, 9, u, v, $q_1, q_3 \in V$, and $s_1, s_2 \in \langle h_1, h_2 \rangle$. If $u = 1$, then because of $[s_1, s_2] \Theta \in X$ and $[s_1, s_2] \Theta \neq 1$ we must have $v \neq 1$. In this case $\overline{s_1 \Theta} = \overline{q_3 q_1}$. Using Lemmas 7 and 10 we obtain $v, q_1, q_3 \in V$, and again $s_1, s_2 \in \langle h_1, h_2 \rangle$. Similarly, if $v \equiv 1$ then $u \neq 1$ and $s_1, s_2 \in \langle h_1, h_2 \rangle$. It remains to consider the case $q_2 \neq 1$.

TABLE 1

All the possibilities appearing in the case $q_2 \neq 1$ are collected in Table 1. Here p, whenever it appears, denotes a non-empty word. From the table we see that if $[s_1, s_2] \Theta \in X_1$, then in every case $s_1 \Theta \in X_1$ and $s_2 \Theta \in X_1$, and therefore $s_1, s_2 \in X_2$ H₁. Similarly, if $[s_1, s_2] \Theta \in X_2$, then $s_1, s_2 \in H_2$. If $[s_1, s_2] \Theta \in V \setminus (X_1 \cup X_2)$, then according to Lemmas 8, 9, 10 we obtain $s_1 \Theta \in V$, $s_2 \Theta \in V$, whence $s_1, s_2 \in V$ $\langle h_1, h_2 \rangle$. All the possibilities are considered and therefore the lemma is proved.

REFERENCES

1. A. G. Kurosh, *Group Theory,* 3rd edn., Nauka, Moscow, 1967 (Russian).

2. A. J. Malcev, *On the equation zxyx* $y \cdot z^{-1} = aba^{-1}b^{-1}$ *in a free group*, Algebra i Logika, Seminar, l, No. 5 (1962), 45-50 (Russian).

3. J. Nielsen, *Die lsomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden,* Math. Ann. 78 (1918), 385-397.

4. P. S. Novikov and S, J. Adian, *On infinite periodic groups, 1,* lzv. Akad. Nauk SSSR, Ser. matem. 32 (1968), 212-244 (Russian).

5. M. J. Wicks, *Commutators in free products,* J. London Math. Soc. 37 (1962). 433-444.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL