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COMMUTATOR EQUATIONS IN FREE GROUPS 

BY 

E. RIPS 

ABSTRACT 

Let f , , . . . ,  f. be free generators of a free group F. We consider the equation 
[z, , . . . ,  z,].  = [f , , . . . , f . ] . ,  where to and to' indicate the disposition of brackets 
in the higher commutators [z, , . . . ,  z.]. and [f,,...,f,]~,. We give a necessary 
and sufficient condition on co and to' for the existence of solutions of this 
equation. It is also shown that for any solution z, -- r , , . . . ,  z, = r. we have 
(r,,...,r.)=q,,...,].). 

Introduction 

F r o m  a we l l -known  resul t  of  Nie l sen  [3] it fol lows tha t  if for  s o m e  e l e m e n t s  r, s 

of  a f ree  g r o u p  F on  two g e n e r a t o r s  a, b 

[r, s l  = [a, b] 

t hen  r, s f reely  g e n e r a t e  F. 

In  the  p r e sen t  p a p e r  s imilar  p rope r t i e s  of  h igher  c o m m u t a t o r s  a re  invest i-  

ga ted .  W e  recal l  the  def ini t ion of  a h igher  c o m m u t a t o r .  

Le t  0 be  a f ree  (non-assoc ia t ive)  m o n o i d  on  one  g e n e r a t o r  i with r e spec t  to  a 

b r acke t  ope ra t ion .  0 is g r aded  in a na tu ra l  way,  0 = U~,=, 0m, whe re  0, = {i}, 

0m f'l 0. = O for  m ~ n and  for  to, E 0,., a~2 E 0., [~o,, r E 0,.+.. 

T h e  h igher  c o m m u t a t o r  [ g , , . . . , g . ] ~  of  the  type  to E 0. of  s o m e  e l e m e n t s  

g , , - . . ,  g.  E G is def ined  by  induct ion  on  n as fol lows: 

(i) if n = 1 then  to = i and  [g,]i = g,;  

(ii) if n > 1 then  to = [tOm, co2], oJ, E 0,., r E 0.- , .  and  

[g , , . . . ,  g,]~ = [ [g , , . . . ,  g,,].,, [g, .§ g,]~]. 

Cons ide r  also a f ree  c o m m u t a t i v e  m o n o i d  0 '  on  one  g e n e r a t o r  i '  and  the  

h o m o m o r p h i s m  ~- : 0 - *  0 '  d e t e r m i n e d  by  ~- : i ~ i ' .  
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Let F| = q l ,  f2, ~  ) be a free group of countable rank on free generators 

f , , f2," " ' ,  and F, = (f, , . . . ,f ,)<-_F| 

THEOREM 1. The equation 

(*) [z,,  -- -, z . ] .  = I f , , . . . ,  fo]~ ( ,o, ,o '  0 . )  

in the free group F| has a solution if  and only if wz = w'1". I f  r,, . . ., r, E F= is a 
solution of  equation (*), then ( r , , . . . ,  r,) = F,. 

The following lemma is the key statement in the proof of the theorem. 

MAiN LEXO~. Let a free group F be decomposed into a free product F = 

Ht * H2, and let h, ~ H,,  h2 E He be non-unit  elements such that the cyclic groups 
(h,) and (h2) are isolated. I f  for some g,, g2 E F, [g,, g2] ~ 1 and [g,, g2] E (h,, h2) 

then one of  the following three cases holds: 

(i) there exists an element s E (h,, h2) such that s- '  g,s ~ H,, s- '  g2s E H, and 
s - ' [g , ,  g2ls = 

(ii) there exists an element t E (h,, h2) such that 

t - ' g , t ~ H 2 ,  t - ' g 2 t E H 2  and t- '[g,,g~]t=h~i'; 

(iii) g~, g~ E (h,, h2). 

REMARK. The assumption that (h,) and (h2) are isolated cannot be omitted as 
the following example shows: 

F = ( f , ) * ( f e ) ,  h , = f , ,  h 2 = f  2, [ fef , , f2]E(f t ,  f~) bu t f2 f ,  f~q, , f2) .  

Note that if r~, re are elements of a free group F then ([r~, re]) is isolated [1]. 

In w we prove Theorem 1 using the Main Lemma and obtain a description of 

endomorphisms of F| that fix [f,, �9 �9 . , f . ] .  for n > 2. The w167 3, 4 are devoted to 
the proof of the Main Lemma. 

w Proo! o! Theorem 1 

The proof is based on separation of variables in the equation ( ,)  for n > 2. At  

first we need the following statement. 

PROPOSITION. Under the assumptions of  the Main Lemma  assume that 

[g,, g2] = [h~, h2]. I f  gt = [g3, g4] then for some integers k, ! one of the following 
cases holds: 

(I) g, = [h,, hel-kh,[h,, he] k, 
g2 = [h,, h2]-kh~h~[h,, he]~; 
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(2) g~ = [hi, 

ge = [ h .  

(3) g~ = [h,, 

g~ = [ha, 

(4)  gl  = [h i ,  

g~ = [ha, 

If  g~ = [g~, gd, 
(1') 

he]-~h ?~h~ha[h,, he]~, 
he] -~ (h 7lh2h,)th ;1[hl, he] k ; 
he]-~h~h 7abe[ha, he] ~, 
h~]-k(h~ah-iah2)ah~ah-(th2'hlhe[h,, h~]k; 

he]-kh ~[h~, h:]", 
h~]-"h~'-'hahe[ha, h~]". 
then for some integers k, i one of the following cases holds: 

g, = [h,, h~]-~h '~ha[ha, he] ~, 
ge = [h,, hel-kh2[ha, hd~ ; 

(2') g, = [h,, h2l-kh?Hh2ha[ha, h2] k, 
g2 = [ha, h2]-kh?i[ht, heir;  

(3') ga -- [ha, h2]-k(h~Zh~ah~ahah2)'h~ah71he[h~, he] ~, 

g2 = [ha, hz]-kh ~ah ~h2~hahe[ha, h~]k; 
(4 ')  ga = [ha, he] -k (h~ihah2)th~a[ha, h2] ~, 

g2 = [h,, he]-kh ~' h,he[ ha, he] k. 

Pgoo~. It is enough to verify the first part of the proposition. [ha, h2] is not 

conjugate to h~ nor to h~ in (ha, he). Therefore according to the Main Lemma it 

follows from [gt, g2] =[ha,h2] that ga, g2E(ha, h2), and, by the theorem of 

Nielsen, g~ and g, freely generate (ha, h2). In particular, ga, g2Z((h~, h2))'. 

Applying once more the Main Lemma we obtain from g~ = [g3, g4] E (ha, he) that 
ga is conjugated in (ha, h2) to one of the elements ha, h:, h? ~, h~ ~. 

We have [gb g2] = [ha, h2] = [h~ah~h2, h~lh~h~thahe] = [hi~heha, h? ~] = 
[h~,h2~h~h2], and each pair of elements (ha, h2), (h~h?lh2, h~hT~h~lhlh2), 
(h?lh2ha, hit) ,  (h~ a, h~ahah,) generates (h~, h2). Therefore we may complete the 
proof of the proposition by proving the following assertion: 

If S is a free group on free generators s~,se, t,h, t2~.S, t~ = t-~s~t and 
Its, t2] = [s~, se], then for some integers k and l 

t, = [s , ,  = [Sa, sel- s s2[s,, 

t - s  t " (modS') .  Let q, be an Indeed, we have h - s 1  (modS ' )  and 2-- 1s2 

endomorphism of S defined by s~0 = t~, s2q, = t~ah. In S/S' ,  ,p induces a linear 

mapping with a matrix (~ o). As [tl, t~t2] =[h ,h]  =[s~,se], according to 

theorem 3 [2], (h, t-(ate) is a positive pair of generators of S. Hence det(o ~ o) = 1, 

m = 1. Thus q~ is an automorphism of S (identical modulo S'). Then by [1, p. 

466] 9, is an inner automorphism of S. It means that for some s E S, ta = s-~sas 
and t~th = s-as2s. We have [s~, se] = [ta, t~t2] = s-a[s, s2]s; therefore s = [sa, se] ~ 
for some integer k, and hence 
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t, = [s,, s2l-kSl[S,, S,_] k and t_, = [s,, S2I-Esl, s2[s,, SZ] k, 

as required.  

Now we re turn  to the proof  of T h e o r e m  1. In the case n = 1, the assert ion is 

trivial, and for n = 2 it follows f rom [3]. Let  n > 2. 

We have to = [to,, to2] and t o ' =  [to',, to'], where  tol ~ 0,,, t o . ~  0,_,., to', E 0,,,., 

to~' E 0._,,., and, correspondingly ,  

[ z , , . . . ,  z , L  = [[Zl,." ", z , l~  [ z , + , , . . . ,  z , H ,  

[f,,"" ", f.]..' = [[f,,"" ". f,.'].~,. [f,.'+,,"" ", f. 1o._.1. 

I f .we set h ,  = I f , .  �9 � 9  fm.].~;, h 2  = [ f m . §  �9 �9 ". f .  ],~_., 

n , = F , . , = ( f , , . . ' , f m , ) ,  H . _ = ( f , . , + , . . . , f . , . . . ) ,  

then  h, E H, ,  h2 E/-/2, and F= = H,  * H_,. T h e  condi t ions of the Main L e m m a  are 

satisfied. Le t  w, = [ z , , . ' . ,  z,.],~, and w_. = [ z , . §  z , ]~ .  T h e  equa t ion  (*) can 

be rewri t ten  as 

(**) [w,, w2] = [h,, h2]. 

I. If m = 1 then n - m _--- 2, whence  to: = [tos, to~] and w, = [w.~, w~] for some 

w5 and w6. According to the Proposi t ion  the equa t ion  (**) is equivalent  to a 

disjunction of the  following four  systems of  equat ions,  in which k and ! are 

arbi t rary integers: 

Wl Zl  [ h l ,  -k  I = = h2] h2h,[ht ,  hE] k, 
(1) 

w~ = [z~, �9 �9 z.  ]~ = [h,,  h~] - '  b '-  +, , '"  ", [, ]~,~ [h,,  h~] ~ ; 

(2) 
w,  = z ,  = [h , ,  h2 l -khT' - 'h2h , Ih , ,  h2l k, 

{ w ~  = [ z2 , ' ' . ,  z . ] ~  = [h,, h2 l -k lJ , , . . . ,  f,,l:,'~[h,, h2lk; 

(3) 
W, = Z, = [h,,  h 1 -kh - ' h - ' h - t+ ' t h  h2] k, 2] 2 I 2 I. I~ 

We = [Z~,'" ", Zn]~ = [h,, h 1-~h- '"- ' f*  �9 -' 2J 2 I t l  U,.'+,, "',f,,]~,~h,h2[h,,h2] k, 

(4) 
w,=zl=[h, ,h 1 - k t ' - ' h t r t "  !- lk 21 f$2 I U t l ,  fl~2..[ 

w, = [z2, '" ", z,,],.~ = [hi, h2l-kh2 '[[ , ,  ' '  ", f,,,,).~ h2Ih , ,  h21. 

II. If 1 < m < n - 1, then  to, = [to3, to4], to2 = [tos, to6], and w, = [w3, w,], w2 = 

[ws, w6] for  some w3, w,, ws, and w6. Using the Proposi t ion,  we obta in  that  in this 
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case the equation (**) is equivalent to a disjunction of the following four systems 

of equations, in which k is an arbitrary integer: 

h k w, = [ z , , . . - ,  zm]~ = [h,, h2] -~ If,,---,/,,,]~,;[h,, 2], 

(5) { w 2 = [ z , , + , , . . . , z . ] ,  =[h, ,h2]_k[f i , ,+, , . . . , [ , ]~ ,~[h, ,h2]k  ; 

(6) 

w, = [ Z , , " ' ,  Z,,,],,,, = [h , ,  h -k - ,  z] h,  [f,,,,+,,'" . , f , , l ,~hl [h , ,h2]  k, 

{ w 2  [z,,,+,, " , z . ] , ~ = [ h , , h 2 ] - k [ f , ,  - '  h ; . . . . . .  ,.L,]2,~ [ , ,h21 ~ 

(7) 

w, = [ z , , . . . ,  z , l , . ,  = [h,, hzl -kh; ' [[ , ,  ". ",f,.,l~/;h2lh,, h2] k, 

w_. = [ z , . + , , . . . ,  z , ] , ~  = [h , ,  h2]-"h~'h~'[f , . ,+, , . .  ",f ,]2~h,h2[h,,  h2]" ; 

(8)  

w,  = [ z , , ' "  ", Z , . ]~  =[h, ,h2l-k[f , , , ,+ , ,  "" -' k ", l- ]~,dh,, h2], 

w.. = [z , .+ , ,"" ", z , ] , ~  = [h , ,  h~]-kh~'[[, ,  "" ",[,.']'~i h2[h~, h2]". 

III. If m = n - 1, then to, = [to3, to4] and again, according to the Proposition, 
the equation (**) is equivalent to a disjunction of the following four systems of 
equations in which k and I are arbitrary integers: 

w, = [ z , , ' . . ,  z .- ,]~ = [h,, h~]-k[f,,  ' '  .,f,.,],o~[h,, h2] ~, f 

(9) ~" w2 = z. = [h,, h2]-kh~h2[h,, h2lk; 

(10) 
w,  = [ z , ,  " ., z . - , ] ,~  = [h , ,  h2l-kh-('[fi . .+,,  . .  ., h ]*,~ h , [ h , ,  h2] k, 

{ wz = z ,  = [h,,  h2l-kh-i 'h2'[h, ,  h21!; 

(11) 

w, = [ z , , "  ", z . - , ]~  = [h,,  h:]-kh2'[ f , ,  - ' h  �9 ",f,..],.; 2[h,,h2] k, 

w2 = z .  = [h,,  h 1-kh-lt'-H h-lh t. r h z. 16 �9 2] 2 t t  I 2 lqtllqt21 I ,  r t 2 j  

w ,  = [ z , ,  �9 � 9  z .  _,1.,  = [h  ,, h~] -~ b'm +,, " " ",/. l: ,~[h,,  h~] ~, 
(12) 

W2 = Z, = [h,,  h2 l - kh2 ' - ' h ,hz lh , ,  hz] ~. 

Comparing the weights of commutators in the left and right parts of systems of 

equations (1)-(12), we see that the systems (1), (3), (5), (7), (9), (11) do not have 
solutions for m ~ m',  but the systems (2), (4), (6), (8), (10), (12) do not have 

solutions for m ~ n - m'. Therefore it is enough for the systems (2), (4), (6), (8), 
(10), (12) to consider the case m = n - m'.  
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Then  for every  system (i), 1 ~ i -< 12, and for every  value of k and l, it is 

possible to construct  an au tomorph i sm ~o = ~0i (k, I) of the group  F~ such that the 

subgroup F. is ~- invar ian t  and the system (i)  can be rewri t ten as 

[ z i , . . . ,  z~,lo, = [ f , ~ , ' ' . ,  f ~ o ] ~ ,  
(***) 

[z, .+l, . .  ", z .k_ = If-+, ,p , ' '  ", f.~o ],o',, 

where  w*~" =w~T and w * r  = w ~ z  for i = 1 ,3 ,5 ,7 ,9 ,  11, and w * r  = w~', wSr  = 

w~- for  i = 2 , 4 , 6 , 8 , 1 0 , 1 2 .  

For  example ,  for  i = 7, we have m = m' ,  w~ = [w~, w~], w; = [w~, w~], where  

w~EO,,,, w~EO,,,-,,,, to'sEO,,,~, w~EO,- , ,  . . . .  and we set w*=[to'~,w~], w * =  
[w~,, w~] and ~ = tt~,, where  

fit ' = ~+.,, 

~tt =.~-, .  +.., 

(13) )~/.t = ~+,~ 

A~ = A  

if l<=j<=m - m l ,  

if m - m i  + l <=j <=m, 

if m + l <=j <=n-m2,  

if n -m2+l<=j<=n,  

i f j > n ;  

(14) { j~v = [hi, h2l-kh ~'[ih2[h~, h21 k 

~v [h, ,h2l-kh;Ih~ij~h,h2[h, ,h2] k 

if l < ] < m ,  

i f j > m .  

As F| = H , .  1-12 = H , .  h ~'H2h, = [h,, h2]-kh~.'(H, �9 h 7'H~h,)h2[h,, h2] k, then !, is 

in fact an au tomorphism.  It is obvious  that Fi i s / z - inva r i an t  and v-invariant .  

Using (13) and (14) one  can rewri te  (7) in the form (***). O the r  cases are similar. 

We  now proceed  by induct ion on n. Assume that for  all n < no the t h e o r e m  is 

a l ready proved.  We prove  it for  n = no, where  no > 2. 

If the equa t ion  (*) has a solut ion z, = r , , . . . ,  z ,  = r,, then for some au tomor -  

phism ~0 this solut ion is also a solut ion of the system of  equa t ions  (***). Since 

m < n = no and n - m < n = no, by the induct ion hypothesis  

o.,,r=w*~', w2r=w~1", ( r , , . . . , r , , )=( f ,~o , . . . , f , .~) ,  
and 

whence  

and 

( r ,+ , , . .  ", r , ) =  ffm+,,p,." ", f.~o), 

= [,,,,~-, ~ . ]  = [ ,o}~ -, o~*.1 = [~o',., , , ,~.]  = ~ ' .  

( r , , . . . ,  r , )  = ff ,~o, . . . ,  [,~o) = F,~o = F,. 
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Now let an" = to'~'. Then to~" = tour and to:- = to~-, or to:- = to~- and to2r = 

to~z. 

If to~z = tour and to:" = to;~" then the system (***) has a solution provided 

to%'=to~"  and to*r =toUr. In this case for m =1  (respectively, for 

1 < m < n - 1, or for m = n - 1) the systems (1) and (3) (respectively, (5) and (7), 

or (9) and (11)) have solutions, and, therefore, the equation (*) has a solution. 

If to~-= to~- and to2r = toil" then the system (***) has a solution provided 

to*~'=to~" and to*z=to~ ' .  In this case for m =1  (respectively, for 

1 < m < n - 1, or for m = n - 1) the systems (2) and (4) (respectively, (6) and (8), 

or (10) and (12)) have solutions, and, therefore, the equation (*) has a solution. 

This completes the proof of the theorem. 

Notice that if zl = r , . . . ,  z, = r, is a solution of the equation (*) and ~ is an 

endomorphism of F.~ such that . ~ = r ~ ,  l< - i<-n ,  then [ f , , - . . , / . ] , ~ =  

[ / , - "  ",f.],o,. Therefore setting to = to' we obtain from the proof of Theorem 1 

the following assertion. 

THEOREM 2. Let n > 2 ,  t o ~ 0 , ,  to=[tol ,  to2], to, G0,,, to2~0,-, . ,  h , =  

~ , ' . ' , f , ] , ~ ,  h 2 = ~ m §  h =[h l ,  h 2 ] = [ / , , ' . ' , / n ] . ,  and let r be an 

automorphism of F| such that hd/ = ~b. Then: 

(1) For 1 < m < n - 1 and to, ,  = to:" there are four possibilities: 
(i) h~$ = h-khlh  k, h2d~ = h-kh2hk; 

(ii) h l~  = h-kh ,h  ~, h2~b = h-kh ;t h ~ h ~* h,h2h2h ~ ; 
(iii) h~b = h-kh?~h-(~h2h k, h2d/ = h - k h ~ h l l h ~ l h , h ~ h  k ; 

(iv) h i s  = h-kh2th  k, h2$ = h-kh2th,h2h k. 

(2) For 1 < m < n - 1 and to~r# t o :  there are the possibilities (i) and (ii) from 

the preceding point. 

(3) For m = 1 there are two possibilities: 

(i) h t $ =  h-~h ~,h~h k, h2d/ = h-kh2hk ; 

(ii) h~$ = h-~h;~h;~h;~+~h~, h2~ = h-kh;~h;Ih~th~h2h k. 

(4) For m = n - 1 there are two possibilities: 

(i) h ~  = h-~h,h  k, hzd/ = h-kh~h~hk; 

(ii) h ~  = h - k h ~ h ; ' h 2 h  ~, h2~ = h -kh2 'h ; ' - ' h ; ' h lh2h  ~, 

where k and l are arbitrary integers. 

For to ~0~ and for elements g , . . . , g .  ~ G  let the set of elements 

A o , ( g , . . . , g , )  be defined as follows: A , ( g 0 = ~ ,  and if n > l ,  to =[to,,to2], 
to~ ~ On, to2 ~ O.-m 

A.  (g,, �9 �9 g. ) = A,~(g,, �9 �9 g,. ) U A,~(gm + . . . . ,  g. ) 

u {[g,,  �9 �9 ]o, [ g , , . . . ,  ] : ; } .  
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COROLLARY 1. Let g, b, an endomorphism of  F~ such that I f , , . . . , f . ] . ,@ = 

[ f , . . . , f , ] ~ ' .  Then  for every g EA~( /~ , . . . , f , ) ,  g~b is conjugate to some g ' E  

A,~ (f,, . . ., [, ). 

PROOF. We proceed by induction on n. F o r  n = 1 the assertion is trivial and 

suppose it is proved for all integers < n. If [f l , '"  ",f,]~oqJ = I f , , "  ",[,],o, then 

Theorem 2 gives the statement. Let I f , , . . . ,  f, ]~ qJ = [ J , , - . . ,  f ,  ]2,'. By Theorem 1 

there exists an endomorphism ~ of F~ such that 

[f,,"" ", f,. 1,o,~ = If,.+,,"" ", f. ]2,1~,,"" ", f,-1~,[/,.+,,"' ", f.l.~, 

[ira+,, . .  , lol .  = U r n + , ,  , lnl2,1. 

Then [I,,-. ",f.],o~: = If,, '" ",In]2,' and [I, , . .  " ,f .] .r  = [L, '" , f . ] .~.  By induction 
hypothesis ~: has the required property, therefore 0 also has it. 

Let A. be the group of automorphisms of the group F. = ff~, . . . ,  f . )  and let 

= C a . ( [ l , , ' '  " , f .] . . ) ,  

H, = C A . ( I f , , "  ",f.,lo.,,f~,*,,'" " , f , ) ,  H2 = CA. i f , , . . . , f , . , [ f . ,+ , , . . . ,1 , ]0~) .  

COROLLARY 2. Under the assumption o f  Theorem 2 for 1 < m < n - 1 and  

tour = to2T there is an exact  sequence 

1--* Hj  x H2 x Z ---~ G~ ---~ Z4---* I ; 

for 1 < m < n - 1 and tOlZ~ to2r there is an exact sequence 

l"-~ Ht  x H2 x Z---) G,o --* Z2---~ I, 

for m = 1 there is an  exact  sequence 

1--~ Z x H2 x Z - . .  G~ ---~ Z2--~ I, 

and  for m = n - 1 there is an exact sequence 

1--~ H~ x Z x Z - -~  G., --~ Z:-- ' ,  I. 

This follows from Theorem 2 by an immediate calculation. 
A description of Gl,.q is given in [2]. It follows from theorem 1 [2] that Gi~q is 

generated by the automorplaisms A,/z of F2 where f~A =f~-', f~A = f ~ f ~ ,  

f~l~ = f 2 f .  f21x = f2. Here A 2= (A/~) 3, and a '  is an inner automorphism: 

jg/~4 = If|, I2 ]- Ifi Ill, I2], i =1 ,2 .  

The following diagram 

1 , (X ~) , (X, Y [ X 2 = ( X Y )  ~) " , SL2(Z) ,1 

---1 ol L 
1 ) (~4 )  • Gt,.q v ; SL2(Z) ,1 
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is commutative, where Xp=tz ,  Yp=p ,  Xu=(~ -:), Yu=(~ :), and for 

E Gv.,j, ~t~ is the matrix (with respect to the basis f~F', ~2F') of the 

automorphism of F2/F', induced by ~0. It is well-known that the upper row is 

exact, therefore the lower row is exact and p is an isomorphism. 

We define functions a(to),  fl(to), ),(to), 8(to) as follows: 

a ( i ) = O ,  f l ( i ) = l ,  ~/(i)=O. 8(i)=0, a([i,i])=l, 

~([ i ,  i ] )  = ~/([i, i ] )  = 8([i ,  i ])  = O, 

and for to ~ 0., n > 2, to = [~o,, w_.], oJ, E 0~, (02 ~ 0._~ 

~ (to) = ~(to,)  + ~(,,,:), /~(to) =/3(to, )  + ~(to_,), 

f ~,(to,) + y(to2) + I, 
~/(to) 1 

t vtto,) + v(to2) 

8(to,) + 8(to:), 
8(o J) 1 

L 8(to,) + 8( (o: )+  1 

if to,~# to:z, 

if to,~ = to2~, 

if ~,~# to:~, 

if tot7 = to2r. 

Let H,. be a subgroup of Go consisting of all ~0 E Go such that g~0 is conjugate 

to g for all g E A,o Or,, . .  ., f ,) .  

I~_a(l~) ZIJ(,o)+.-2 COROLLARY 3. Ho iS normal in G~ H~ = ,-,v.il • , Go/H~ is finite 
and of order 2 ,')§ 

This corollary easily follows from the preceding results using induction on the 

weight of to. 

02. Irreducible  form of a c o m m u t a t o r  

Let M be a set and x~ and y~ symbols with a ( E M .  Denote  by Y the 

semigroup of words in the alphabet {x~, y~ [ a E M}, and let F be a free group on 

generators f~, a E M. Let  ~:: Y--* F be a homomorphism of semigroups such 

that x ~  = [~, y ~  = [~'. Let further o ' :  Y - *  Y be an antiisomorphism, defined 

by x~o- = y~, y~cr = x~, a E M. For every w E Y, totr~ = (to~:)-% 

A word from Y is called irreducible if the symbols x, and y~ do not appear in 

it one near the other  for all a • M. It is well known that the restriction of s ~ on 

the set X of irreducible words is bijective; therefore there exists an inverse 

mapping O : F --> X. 

A word to E Y is said to be cyclically reducible if for some a E M it begins 
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with x, and ends with y,,  or begins with ya and ends with x~ Otherwise it is said 

to be cyclically irreducible. 

The length of a word w E Y will be denoted as l (w) .  The  word wtr we shall 

write also ft. The  graphical equality of words will be denoted by the symbol = .  

Let us consider in Y the subsets A~, 1 _-< i _-< 8, defined as follows: 

for some word w E Y we set 

w ~ A,, if w - ~dcd ; 

w ~ A2, if w =- b~dbcd ; 

w ~ A3, if w ~ b ~ t ~ c e  ; 

w E AS, if w =-- b~db~cde ; 

w ~ AS, if w ~ a~dcda ; 

w ~ AS, if w =- a M d b c d a ;  

w ~ AT, if w =- (tG~b~cea ; 

w E As, if w - ab~db~cdea, 

where a, b, c, d, e denote non-empty words from Y whenever they appear. 

Let A = O ~ ,  Ai. Wicks [5] has proved the following statement. 

LEMMA 1. A non-uni t  e lement  r E F is a commutator  o[ some s,, s2 E F if and  

only if for some q ~ F (q-~rq )@ =- ~b~abe where some o f  the words a, b, c m a y  be 

empty. 

Since all cyclic permutations of a word ab6abc belong to A, U A2 U A3 U AS, we 

obtain: 

LEMMA 2. A non-  unit e lement  r E F is a commutator  o f  some s,, s,_ ~ F if and 

only i[ rO E A. 

w S o m e  further  l e m m a s  

Let M = M,  U M._, M,  fq M2 = f~, H, = ([., a E M,) ,  H.. = ([~, a E M2), X ,  = 

H,O, X2 = H20. 

Further, suppose that Mt ~ ~,  M_, ~ ~ ,  and that v~ and v2 are some non- 

empty cyclically reduced words, v, ~ X~, v_. E Xz. Let V = ((v,~, v_,~))| 

LEMMA 3. I[ aba E V and  the word b is cyclically irreducible, then a, b E V. 

PROOF. We may assume that a ~ 1 and b ~  1. For some words q,, q,, q~, a,, 

c,, c_~ we have 

~ba - c~q2q,a, - a,El~El~C~_, 

where a, E V, q ,a ,  - a, q._q,a, E V, fi,(l,(13~ V, and each of the words q,q~_,q,q~. 

coincides with one of the words v,, 17,, v_~, ~2. If q, ~ 1 then q2 = q3, hence q_~ -= 1 
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because the word b is cyclically reduced. Thus, in such a way or another,  

a - q ,a ,  E V. Then also b E V. The lemma is proved. 

LEMMA 4. I f  a, b E  V, a -  ajp, b - p b ~  and  al, b l ~ X ,  then a~,p, b t ~  V. 

PROOF. If one of the words at, b~ is empty, then the assertion is obvious. 

Assume that a~ ~ 1 and bt ~ 1. Let us consider the word ~btcatp,  where 

c ~ 1, if the word atb~ is cyclically irreducible, 

c --- v.~, if a,b,  is cyclically reducible, a =- v~a2 or a - 5~a2, 

c = v~, if ajbt  is cyclically reducible, a =- v~a~ or a = 5,.a~. 

In each of these three cases ~b,ca ,p  E X ,  and the word blcat is cyclically 

irreducible. By Lemma 3, p ~ V and, therefore, a, E V and bt E V. The lemma 

is proved. 

A w o r d  w is called simple if it cannot be represented in the form v - u ~ with 

k > 1 (see [4], definition 22). From now on we suppose that the words vt and v2 

are simple. 

LEMMA 5. I f  av ,b  E V, or av2b E V, then a, b E V. 

PROOF. Let av tb  E V. We have av tb  - a~a2vtb2b,, where at, a2vtb2, bt ~ V 

and a , v , b ,  E X , . _  _ Then for some k = 1 ,  a 2 v t b 2 - v ~ ,  or aw~b2=-_ v,.-k But the 

equality a 2 v t b 2 - ~  is impossible, because v, cannot coincide with a cyclic 

permutation of 6t (see [4], definition 14 and lemma 45). 

Since vt is simple, it cannot coincide with its non-trivial cyclic permutation 
k- - i  

([4], lemma 20), therefore it follows from a2vtb2 -- v~ that a2 - v~t -' and b2 - V l 

for some i, 1 _-< i _-< k. Hence we obtain a E V and b ~ V. The case av2b E V is 

similar. The  lemma is proved. 

LEMMA 6. I f  ab E V and ba E V, then a E V and b ~ V. 

PROOf. We may assume that a b ~  1. Then ab =- u~c~ =- c2u2, where each of 

the words u~, u2 coincides with one of the words vt, ~t, v2, ~52. If l(u~) <- l (a ) ,  then 

a - u ta , ,  therefore ba - bu~a~ E V, whence by Lemma 5 b E V and, further, 

a E V. Similarly, if l(u2) <- _ / ( b ) ,  then a E V and b E V. But i f / ( u , )  > l ( a )  and 

l(u2) > l (b )  then ab coincides with one of the words vt, ~t, v2, 172. Suppose for the 

sake of definiteness that a b - v t .  In this case a , b  ~ X ~  and, because of 

l (ab )  = l (ba) ,  we have ba - v~ or ba - ~t. The equality ba ~ 6t is impossible 

since ba is a cyclic permutation of vl. If ba ~ v~ - ab, then one of the words a, b 

must be empty, because v~ is a simple word. Then a ~ V and b ~ V. Other  cases 

are similar. The  lemma is proved. 

LEMMA 7. I f  W -- ~dcd ~ V \ (X~ U Xz), where c ~ 1, d ~ 1, then c, d ~ V. 
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PROOF. We have w =- u,a, - a2u2, where each of the words uj, u2 coincides 

with one of the words m, 6,, v2, 62. 

If l (u,)  <= l(c), then ~" -= u,p, and then w =- u,pd~a,d. By Lemma 5, d E V and, 

further, c E V. Similarly, if l(u2) <= l(d),  then c E V and d E V. Now we shall 

show that l ( u , )>  l(c)  and l (u2)> l (d)  leads to a contradiction. We may assume 

u, ~ v,, as other  cases are similar. Then d---qd, ,  where q E X,, q ~  1, and 

w =- ~qd, cd,(l, whence u2 = v,, or u2 -- 6,. We obtain c E XI and d E X~, and 

therefore w E X,. This contradicts the conditions of the lemma. The lemma is 

proved. 

LEMMA 8. I f  W =-- b~dbcd E V \ (X,  U X2), where the words b, c, d are non- 

empty, then b, c, d E V. 

PROOf. As cd E X and /~ E X, then the words t~d and bc are cyclically 

irreducible. It follows from cd E V that t~db E V, whence by Lemma 3, b ~ V 

and ~d ~ V. Application of Lemma 6 gives c, d E V. Similarly, i f / ~  E V then 

b, c, d E V. We have to prove that cd E V, o r / ~  E V. 

We have w ==-- u,a, =- a2u2, where each of the words m, u2 coincides with one of 

the words m, 6,, v2, 62. If l (u,)  _~ l(b), then/~ -= u,p and w =-- U,l~apa,cd, and by 

Lemma 5, cd E V. Similarly, it follows from l(u2) <-<_ l (d)  that Gt~ E V. 

Now we shall show that l (m)  > l(b)  and l(u2) > l (d)  leads to a contradiction. 

We may assume u , -  m. Then ~ -= qt~,, where q E X,, q ~  1. Since w ~ b~dbc~(ld 

and l(u2) > l(d) ,  we have u2 -= m or u2 -- 6,. Since w ~ X,, b E X,, and d E X,, 

so c =- c2uc3, where u -- v2, or u --- 62. We have w =- G~3a~2dbc2uc3d, whence by 

Lemma 5, ~ E V and c3d E V. As db E X, by Lemma 4, b ~ V in contradic- 

tion to l ( m ) >  l(b). The lemma is proved. 

LE~vnvta 9. Let w ==-b~db~cde E V \ ( X ,  U X2), where the words b, c, e are 

non-empty and, if d ==- 1, then c is cyclically irreducible. Then b, c, d, e ~ V. 

P~oo~. Since cd E X and ~d ~ X, the words cd and t~d are cyclically 

irreducible. It follows from/~d-b E V that b E V, g'tt ~ V and ~cde ~ V. Then 

e E V and cd ~ V which gives c ~ V and d E V. We have to prove that 

b?.db ~ V. 

We have w - u,a,  =- aeu2, where each of the words m, u2 coincides with one of 

the words m, 6 .02 ,  62. We may assume that u ~ -  m. If u 2 -  02 or u 2 -  62 then 

some non-empty word from X, is an initial segment of the word b~db, and some 

non-empty word from X2 is a final segment of the word ~cde. Then some final 

segment of ~.db is a word from X, and some.initial segment of [cde is a word 

from X~. This implies b~db ~ V. 
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Since b~ E X the word w is cyclically irreducible and therefore u_, # ~ .  We 

have to consider only the case u2 = v~. 

If l(va)<= l(b), then /~= v,p and w =-v~p6dpO~ecde, so that by Lemma 5, 

~cde E V and, further, b(.db E V. Similarly, if l(v,) <= l(e), then b~db E V. 

Now we show that l(v~)> l(b)  and l ( v , ) >  l(e) leads to a contradiction. It 

follows from l(v,) > l(b)  and l(v,)  > l(e)  that b E X,, e E X, and 6 = qc,, where 

q E X,, q # l .  As wff. X,,  then ~cde~X~.  This means that c ==-c,_uc3(l, or 

d =- d,ud~, where u -= v_,, or u = iT,. 

If c -~ c,_uc~(l, then w =- 6qe~a~,_db~c,_uc~(lde. Hence by Lemma 5, ~63 ~ V. 

The word w is cyclically irreducible, therefore 

w'- = ~db~c,_ uc~(tde~e~ae2db~cde E V, 

whence c3t/de~63 E V. It follows from db E X that the word deb is cyclically 

irreducible. By Lemma 3, c ~  E V. Then b E V which contradicts l(v~) > l(b). 

Similarly, it follows from d =-d~ud2 that e E U in contradiction to l ( v , ) >  l(e). 

The lemma is proved. 

LEMMA 10. I[ 66b~ce E V \ ( X ,  UX2) and be E X, where the words b,c,e are 

non-empty, then b, c, e ~ V. 

PROOF. Let c--6~c2c~, where c2 is cyclically irreducible. By Lemma 9 

c~b, c,., c,e ~ V. Since/~t?~ E V and c~e E V, so from be (E X according to Lemma 

4 follows b E V, c~ E V and e E V. Therefore  also c E V. The lemma is proved. 

04. The proof of the Main Lemma 

Let the conditions of the Main Lemma be satisfied. Let [~, a E M~, be a system 

of free generators of H, and let [~, a E M2, be a system of free generators of/42. 

We may suppose that elements fo are chosen in such a way that h, |  and h2| are 

cyclically irreducible. Then the condition that (h,) and (h2) are isolated means 

that the words hlO and h20 are simple. 

Let V = (h,, h2)O. We have [ g , , g 2 ] O - ~ , w 2 w ,  E V, where the word w2 is 

cyclically irreducible. Then according to Lemma 3, w~ E V and w2 ~ V. Let 

r = ~,~, r, = r- 'g,r  and r2 = r-'g2r. We have [r,, r2]O = w2. 

Let the pair of elements s,, s~ E F have the properties 

(a) <s,, s2) = <rl, r2>, 

(b) [r,, r21 = Is,, s2], 
and the sum of lengths l(sl) + l(s2) be the minimal possible for pairs of elements 

of F satisfying (a) and (b). 
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The arguments from the proof of theorem I of [2] show that the elements st, s2 

have also the following properties: 

(c) [ s , , s2 ]O-u ,u2u3u4 ,  where u ~ # l ,  i = 1 , 2 , 3 , 4 ,  s t O - u , q , ,  s , O - f l , u , q , . ,  

s ,O = fl2u3q3, s20 -- fl3u4, 

(d) 2 l ( q , ) _  <- l(sj), i = 1,2,3, j = 1,2. 

We shall show that s,, s2 E H1, or st, s2 E/-/2, or st, s2 ~ (h,, h2). Then, accord- 

ing to (a), the same will hold for rt, r2. Since r E (h,, h2), (h,, h2)N H, = (h,), 

(h , ,h2)N H 2 = ( h 2 )  and the subgroup ([rt, r2]) is isolated, this is enough to 

complete the proof of the Main Lemma. 

If the words qt, q2, q3 are non-empty,  then it follows from st| - f l , ~  - fl2u.~q3 

and s2| - 42ti2ql - 43u4 that for some non-empty q, qt ==- qp,,  q2 = -  qp2, q.~ - qp3. 

Then [s,, s 2 ] O -  flu;u2u3u'~q, where u, - flU~, u 4 -  u'4q. This contradicts the 

cyclical irreducibility of [st, s2]O---[r,, r ~ ] O -  w~. Therefore at least one of the 

words q,, q2, q3 is empty. 

Assume at first that q2 -- 1. By the condition (d), for some words u, v we have 

s,| -- fl,uq3 and s20--f13vq~. Then [Sl, S2]{~fl3l,'~l~/3fllUl)ql. If [ s ,  s 2 ] O E X , ,  

then u, v, q,, q3 E Xt, whence s , |  E X, and st, s2 E H,.  Similarly, if [s,, s_.]O E 

X2, then st, s2 E/-/2. 

Let [st, s2]O E V \ (X, U X2). If u # 1 and v # 1, then according to Lemmas 7, 

8, 9, u, v, q,, q3 E V, and st, s2 E (h,, h2). If u - 1, then because of [s,, s_,]O E X 

and [st, s2 lO#  1 we must have v #  1. In this case SlO--- fl3ql. Using Lemmas 7 

and 10 we obtain v, qt, q3 E V, and again st, s2 E (h,, h2). Similarly, if v = 1 then 

u #  1 and s,, s2 E (hi, h2). It remains to consider the case q2 # 1. 

TABLE 1 

q,, q2, q~ s,O s,_O [ s,, s,].O 

q, =- I, q.,-~ pq2 42u~pq,. 4,_#u, 4,_pa, q~_a4pu,u~ 
ql m I, q3 -~ q2 q2u3q2 q2 u* q2uxq 2~4W~144 

q,-~ I, q~ =-Pq3, q~ # 1 4.,#u~q~ 4~#a2 Ft,a.,pq.~u:u, pu._ 
q, =-- q, =- 1 Fl:u3 el:a: a,q:u~u~l:a~ 
q, =-pq:, q, =- 1 ~ a ,  4:a~pq: u,u:#a,4~a~a~pq~_ 
q, ~- q~, q,  =- 1 Fl~a, ~ha:q: u,u:C~,Ft~a:q~ 
q~ --- pq,, q, # I ,  q, =- 1 Fl,pu~ 4,~a,q,  a~pu~u.,q,pu:q, 

All the possibilities appearing in the case q2 # 1 are collected in Table 1. Here 

p, whenever  it appears, denotes a non-empty word. From the table we see that if 

[st, s2]O ~ X,, then in every case s, |  E X, and s2| ~ X,, and therefore s,, sz E 

H,.  Similarly, if [st, s2]O E X2, then st, s2 E H2. If [s,, s2]O E V \ ( X ,  U X2), then 

according to Lemmas 8, 9, 10 we obtain s , O E  V, s2 |  V, whence s,,s2 E 

(h,, h2). All the possibilities are considered and therefore the lemma is proved. 
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